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Abstract

While behavior cloning has recently emerged as a
highly successful paradigm for autonomous driving, hu-
mans rarely learn to perform complex tasks, such as driv-
ing, via imitation or behavior cloning alone. In contrast,
learning in humans often involves additional detailed guid-
ance throughout the interactive learning process, i.e., where
feedback, often via language, provides detailed informa-
tion as to which part of their trial was performed incor-
rectly or suboptimally and why. Motivated by this obser-
vation, we introduce an efficient feedback-based framework
for improving behavior-cloning-based training of sensori-
motor driving agents. Our key insight is to leverage re-
cent advances in Large Language Models (LLMs) to pro-
vide corrective fine-grained feedback regarding the under-
lying reason behind driving prediction failures. More-
over, our introduced network architecture is efficient, en-
abling the first sensorimotor end-to-end training and eval-
uation of LLM-based driving models. The resulting agent
achieves state-of-the-art performance in open-loop evalu-
ation on nuScenes, outperforming prior state-of-the-art by
over 8.1% and 57.1% in accuracy and collision rate, re-
spectively. In CARLA, our camera-based agent improves
by 16.6% in driving score over prior LIDAR-based ap-
proaches.

1. Introduction

Humans often learn new tasks through the synchrony of
demonstration and feedback [46, 60]. Consider the task of
driving, especially the challenging feat of merging onto a
highway. Simply re-watching videos of a driver merging is
often insufficient to learn complex longitudinal and latitu-
dinal control tasks; it is immensely more helpful to receive
feedback on when to accelerate, match the speed of other
cars, and finally merge when safe.

Currently, the most common paradigm for training au-
tonomous driving systems relies primarily on learning from
expert demonstrations, e.g., via behavior cloning [2, 3, 15,
28, 30, 35–37, 37, 39, 95, 99, 108]. While this has fueled
impressive improvements, these systems still fail to gener-
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Figure 1. Robust Sensorimotor Agent Training through Feed-
back Guidance. Our study introduces a feedback-guided mecha-
nism for training a sensorimotor driving policy. Specifically, our
proposed approach leverages a Large Language Model to guide the
driving policy learning task through structured critique and reason-
ing as language prompt, i.e., to effectively reflect and learn from
prediction mistakes.

alize to a wide range of novel scenarios [19, 37, 80, 86, 97].
We believe a possible reason could be the lack of feedback
explaining why a certain action policy fails. Rich feedback
from a teacher can be beneficial to learning the cause of
a control failure in an out-of-domain scenario [6, 26, 59].
While humans can use the rich space of language to receive
feedback, existing model pipelines lack such an intuitive in-
terface. Some works often resort to complicated feedback
pipelines like ranking reward functions [71]. Recently, mul-
timodal large language models [50, 53, 61, 79, 84, 107] with
their ability to converse, perceive, and act [22], seem to have
the fundamental qualities that would allow rich language
feedback to supervise and mitigate robustness issues in sen-
sorimotor driving agents.

Hence, we propose FeD, a feedback-guided end-to-end
sensorimotor driving agent that employs a multimodal large
language model (MLLM) to leverage their rich language
interface for user-control and refinement, as illustrated in
Fig. 1. Our approach overcomes bottlenecks on recently-
proposed contemporary MLLM-based driving methods [58,
90] using three key features: 1) Current models lack a lan-
guage interface to refine predictions from explanations of
failure. In contrast, we train an MLLM with a rich language
understanding prior to refining its prediction from auto-
generated explanations of failure - allowing a user to teach



and refine predictions using language at test time as well. 2)
A recent GPT4-based driving method [58] employs compli-
cated pipelines to translate images into intricate spatial state
information at test time. However, we train our MLLM via
distillation from a privileged agent with access to ground-
truth Bird’s Eye View (BEV) of the scene [89, 101]. This
allows the MLLM to generalize more robustly to just raw
images at test time. 3) MLLMs are often slow to itera-
tively generate a sequence of tokens, limiting their real-time
deployment and closed-loop evaluation for a speed-critical
application like driving [90]. To improve speed, we infer
the waypoints from the token representations in a masked-
token fashion [38, 57, 81]. This enables us to achieve a sig-
nificantly higher frame rate, which is crucial for real-time
deployment. Furthermore, all contemporary MLLM-based
driving approaches [58, 90] use closed-source and expen-
sive GPT API’s that cannot be evaluated in real-time or be
trained end-to-end. In contrast, we focus on adapting an
open-source model, LLaVA [53], so that the community can
easily extend and extensively analyze the various modules
of our model. As a result, our novel agent enables efficient
end-to-end closed-loop evaluation, i.e., on CARLA [21], for
the first time to the best of our knowledge.

In summary, our contributions are as follows. We in-
troduce FeD, a highly efficient MLLM-based sensorimo-
tor driving model, enabled by three key improvements:
1) language-based feedback refining trained using auto-
generated feedback data. Hence, our approach requires no
additional data collection. 2) training the model via distilla-
tion from a privileged agent with Bird’s Eye View (BEV) of
the scene, allowing our model to robustly use just RGB data
at test time. 3) predicting driving waypoints in a masked-
token fashion from the waypoint tokens’ internal represen-
tations, i.e., not relying on the slow sequentially generative
process. In our experiments, we demonstrate state-of-the-
art performance in open-loop and closed-loop evaluation
settings, improving over prior methods by over 16% in per-
formance, particularly benefiting from the additional auto-
generated language-based feedback. Notably, FeD achieves
a significant drop in infractions by over 33% with almost
zero collisions with objects in CARLA.

2. Related Work
Imitation Learning for Autonomous Driving (AD): Re-
cent advances in imitation learning (IL) for autonomous
driving originate from ALVINN [65], a neural network
trained to imitate the driving behavior of an ego vehi-
cle. Since then, more elaborate IL-based approaches for
autonomous driving have emerged [8, 9, 11, 27, 44, 49,
62, 70, 77, 78, 89, 96, 98, 99, 103, 104, 108]. How-
ever, today’s behavioral cloning systems have yet to be suc-
cessfully transferred to large-scale deployment in the real-
world [2, 18, 76] and are plagued by an array of learning-

based issues, such as shortcut learning [37] and overfitting
to spurious correlations [19, 86]. In our work, we introduce
richer feedback, such as language, to effectively supervise
and mitigate robustness and efficiency issues in sensorimo-
tor driving agents. Moreover, previous methods show that
decomposing the imitation task into two stages - training a
privileged agent and then learning to distill from the privi-
leged agent [7, 9, 10, 83, 89, 99, 101] can significantly ease
the difficult sensorimotor learning task. However, none of
the approaches leverage the rich language priors of MLLMs
and employ effective knowledge acquisition. Moreover, we
demonstrate effective feedback to be more crucial for teach-
ing complex planning skills to sensorimotor driving agents.

Vision-Language for Autonomous Driving: Due to the
rich linguistic prior in LLMs, they are widely employed in
autonomous driving tasks, e.g., for anomaly detection [45],
and Bird’s Eye View prediction [20]. Other works focus
on augmenting driving datasets with various language de-
scriptions [66, 88], or constructing environments for novel
driving scenarios [24, 31, 85, 100, 102]. Recently, a grow-
ing number of contemporary works leverage MLLMs for
driving decisions [12, 16, 17, 23, 58, 73, 87, 90]. Specif-
ically, Mao et al. [58] proposes a motion planner and Xu
et al. [90] presents an interpretable end-to-end driving sys-
tem, both using the closed-source GPT4. We use an open-
source LLaVA [53] to spur further open development. More
importantly, Mao et al. [58] estimates intricate state infor-
mation, which we bypass using a teacher-student distillation
approach. While Xu et al. [90] operates on images, their
approach is slow due to an autoregressive action generation
approach. In contrast, we predict waypoints all at once, and
leave action control to a separate module, allowing us to im-
prove frame rate and perform closed-loop evaluation. Other
related methods [17, 23, 87] that conduct closed-loop eval-
uation use a privileged simulator [47], constraining their ap-
plicability in real-world sensorimotor scenarios.

Large Multimodal Language Models for Control: Re-
cent advances in LLMs [22, 50, 53, 61, 63, 79, 84, 107] pro-
vide an intuitive approach for incorporating general feed-
back and task specifications with scene topology and plan-
ning [4, 75, 82]. MLLMs, that accept images and lan-
guage [50, 53, 61, 107], have shown impressive downstream
task performance for robotics and control - for predicting
control policies [51, 52], designing rewards [93] and design
and motion planning [41] for embodied AI [22, 74, 92]. In-
struction tuning, in-context learning [48, 106], and custom
tokens have powered a lot of these directions to tune the
rich prior of these models for either a specific task, e.g.,
robotic action control [4], or generalist action agents [69].
However, efficiently leveraging such powerful models in the
context of autonomous driving policies remains minimally
explored, with concurrent solutions leveraging inefficient



pipelines with multiple stages which cannot be optimized
end-to-end nor accommodate standard closed-loop evalua-
tion [12, 54, 58, 87, 90], e.g., on CARLA [1, 21].

Explainability and Refinement: Explaining deep network
predictions, both in an introspective [64, 72] manner and
by rationalization-based approaches [25, 29] for human-AI
collaboration has also been long studied for increasing hu-
man trust in robotics [42, 91] and improving users’ mental
models of vision-language agents [68]. However, there is a
very limited exploration into whether explanations of fail-
ure cases can improve model performance, especially in the
realm of robotic control and driving. While recent works
have focused on explanations for robotic failures [54] and
object navigation [79], they also do not show if we can use
these explanations to make the network refine the predic-
tions. Here, we show that explanations help FeD refine
its predictions by training it to take the past failure in the
context while predicting the next waypoints. We hypothe-
size that grounding the model in language can provide more
structured failure reasoning, i.e., in contrast to the coarse su-
pervision provided by simply incorporating additional aux-
iliary losses alongside the imitation objective [2, 14, 99].

3. Method
Towards facilitating robust and efficient training of sensori-
motor driving agents, we leverage pre-trained MLLMs that
can ease model training through effective feature distillation
and feedback reasoning fine-tuning. In this section, we first
formulate the sensorimotor learning problem in Sec. 3.1.
Next, we propose a framework for adapting MLLMs to the
end-to-end driving policy learning task via distillation and
efficient inference in Sec. 3.2. Given the proposed network
structure, we propose a fine-tuning process that facilitates
effective failure reasoning in Sec. 3.3. An overview of our
model and training process can be seen in Fig. 2.

3.1. Problem Setting

Our formulation follows the standard goal-driven naviga-
tion task based on CARLA [10, 21]. MLLMs are not tra-
ditionally trained to process dense spatial information re-
quired for driving. Thus, to ease the training of the sensori-
motor agent, we leverage rich supervision over the internal
features via knowledge distillation from a privileged agent
fp
ψ:X p → Y , which has access to privileged observations
xp = (I, v, c,g,E) ∈ X p, where the environmental infor-
mation E = {L,O,T} contains the ground-truth planned
route centerline L ∈ RNl×2, object locations O ∈ RNo×2,
and traffic light locations with their states T ∈ RNt×3.
Nl, No, Nt are the number of centerline points, objects, and
traffic lights, respectively.

Given the privileged driving agent, our goal is to train
a student sensorimotor policy function fs

θ :X s → Y that

maps a set of sensory observations X s to a set of naviga-
tional decision Y . In our setting, we assume the access to
the sensory observations xs = (I, v, c,g) ∈ X s of a front
camera image I ∈ RW×H×3, ego vehicle speed v ∈ R,
a categorical navigational command c ∈ N (i.e., turn left,
turn right, follow, forward, left lane changing and right lane
changing), and an intermediate GNSS (Global Navigation
Satellite System) coordinate goal g ∈ R2 [9, 99]. Given
the observations at each time step, sensorimotor agent fs

θ

learns to predict a set of K waypoints ys ∈ Y in the fu-
ture. Nonetheless, most of this information is not easily
conveyable to an LLM without a proper architecture and
training process, discussed next.

3.2. An End-to-End LLM-based Driver

In this section, we introduce our framework for training
sensorimotor driving skills to LLMs. We closely follow a
MLLM architecture LLaVA [53], with an additional way-
points prediction head consisting of multi-layer perceptron
(MLP), as shown in Fig. 2. This enables FeD to be ini-
tialized from pre-trained LLaVA-7B weights [53], benefit-
ing from the large diverse image-text corpus used to train
MLLMs. However, we find off-the-shelf LLaVA to perform
poorly in intricate spatial reasoning tasks, addressed below.

Token Prediction Mechanism: We note that our proposed
architecture does not leverage generative sequence predic-
tion as in most related approaches, e.g., [58, 90], but in-
stead draws inspiration from more efficient methodologies
based on masked token prediction [57]. Formally, cur-
rent LLM-based autonomous driving models are trained
to generate a sequence of text tokens s1 . . . sn ∈ S
by modeling the probability of the next token given all
seen tokens P (sn|s1, . . . , sn−1). At the inference time,
given the tokenized input prompts, the model samples
from the distribution recursively until the end token is
reached: s̃n ∼ P (s|s1, . . . , sn−1). Such language gen-
eration process results in long inference time and instabil-
ity, which is critical for real-time on-road applications and
closed-loop evaluation. Moreover, several recent related
methods,e.g., [17, 23, 87], conduct closed-loop evaluations
in a simplistic highway simulations [47] with privileged
state information such that their applicability in more com-
plex and real-world scenarios remains unknown. Therefore,
we present FeD, the first efficient end-to-end LLM-based
sensorimotor driving agent.

Vision Encoder: The front camera image I is processed
by a CLIP ViT vision encoder [67], whose output image
features Z are converted into language embeddings U ∈
R512×4096 by a trainable projection matrix A

Z = VisionEncoder(I)
U = A · Z

(1)
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Figure 2. Network Architecture and Training Process of FeD. Our goal is to train a sensorimotor agent to map front camera images
(orange) and ego vehicle state information (blue) encoded as language tokens, and predict a set of future waypoints. This is accomplished
by introducing new waypoint tokens (green) as part of the input prompt. Our introduced tokens also enable us to leverage the rich output
embeddings from the LLM for the prompt to perform direction waypoint prediction, i.e., as opposed to slow and inefficient sequential
generation. Our training is done in two stages. First, to ease the challenging sensorimotor learning task, we introduce a privileged agent
that additionally takes ground truth environmental information (purple) and provides rich supervision for training the sensorimotor agent
through feature distillation. Subsequently, the sensorimotor agent is fine-tuned with prompt-based feedback to enable efficient failure
reasoning, i.e., effective reflection on its own mistakes.

Language Encoder: Given the language prompt shown in
Fig. 3, we first compute language embeddings Q which is
concatenated with visual embeddings U. We then encode
the concatenated embeddings [U,Q] with an LLM,

P = LLM([U,Q]) (2)

where P is a softmax probability over the entire vocabulary
space at each step. For our LLM embeddings we leverage
pre-training with LLaMA [84].

Waypoint Prediction Head: Our efficient MLP-based
waypoints prediction head takes as input the features of the
last hidden layer Hs ∈ RK×4096 from the MLLM that cor-
responds to the K waypoint tokens in the language prompt
(discussed later) and outputs waypoints ys ∈ RK×2

ys = WaypointHead(Hs) (3)

To emphasize, we propose to directly compute the way-
points from the output embeddings of those tokens. This
bypasses the need for recursive token-by-token generation
and expensive sampling strategies like beam search, lead-
ing to a more efficient inference process. Specifically, our
proposed architecture is able to achieve a frame rate of 2.7
frames per second (FPS), which is more than 20× faster
comparing to generating waypoints as language tokens re-
cursively that runs at around 0.1 FPS.

Prompt Design for Sensorimotor Agent: As shown in
Fig. 3, for the sensorimotor agent, we wrap ego-vehicle
speed v and short-term goal g with flag tokens indicating
the beginning and the end of the text span. We further pro-
vide the categorical command as natural language, i.e., turn
left, turn right, go straight, follow the lane, change lane to
the left, change lane to the right. We additionally introduce
K waypoint tokens, i.e., “<w1>...<wk>”, whose corre-
sponding features out of the last hidden layer from LLM are
used for final waypoints prediction. We introduce 512 im-
age patch tokens “<im_patch>” as placeholders, whose
embedding features will later be replaced by visual embed-
dings U before inputting it to the LLM.

Prompt Design for Privileged Agent: For the privileged
agent, we additionally provide parameterized environmen-
tal information. Specifically, all the surrounding objects,
i.e., vehicles, and pedestrians within 30 meters range in
front of the ego vehicle can be represented by its location
in BEV. We discretize the BEV into a 96 × 96 grid and
each cell of the grid can be represented by a location token
<loc{i}>|96×96

i=1 . Therefore, each continuous location in
BEV can be represented by a location token of the cell it
falls in. The traffic light is represented by a location token
and a state token, i.e., “<red>,<yellow>,<green>”.
A delimiter token is applied to separate each object. The



Predict ten future locations in 2.5 seconds if the current speed <speed_start>3.2</speed_end>, the future goal is 
<goal_start>(18.79, -37.26)</goal_end> and the command is to follow the lane, given current front camera view: 
<im_start><im_patch><im_patch> … <im_patch><im_end>

and the information about surrounding objects with their predicted movements, traffic lights with their states, and the planned route:
Vehicles: <veh_start><loc7399><delimiter><loc126><delimiter>…<delimiter><loc293></veh_end>
Pedestrians: <wlk_start><loc8462><delimiter><loc667></wlk_end>
Traffic lights: <tl_start><loc7524><delimiter><red></tl_end>
Planned route: <rl_start><loc6122><loc409>…<loc836></rl_end>

Human:

Sure, here are the future waypoints <waypoints_start><w1><w2><w3><w4><w5><w6><w7><w8><w9><w10></waypoints_end>Agent:

Predict ten future locations in 2.5 seconds if the current speed <speed_start>3.2</speed_end>, the future goal is 
<goal_start>(18.79, -37.26)</goal_end> and the command is to follow the lane, given current front camera view: 
<im_start><im_patch><im_patch> … <im_patch><im_end>

Human:

Sure, here are the future waypoints <waypoints_start><w1><w2><w3><w4><w5><w6><w7><w8><w9><w10></waypoints_end>Agent:

given current front camera view: 
<im_start><im_patch><im_patch> … <im_patch><im_end>

If ego vehicle’s current speed is <speed_start>3.2</speed_end>, the future goal is <goal_start>(18.79, -37.26)</goal_end> and the 
command is to follow the lane, please evaluate the predicted future locations of ego vehicle 
<waypoint_proposal_start><loc9168><delimiter><loc8592>…<delimiter><loc5280></waypoint_proposal_end>

Human:

Sure, given the predicted future locations of ego vehicle, the following instances would occur:
<feedback_start>Collision with vehicle at 1.5 seconds in the future, with vehicle at (-0.04, -7.77).
Collision with pedestrian at 1.5 seconds in the future, with pedestrian at (0.21, -3.34).
Traffic light violation.
Large deviation with planned route at 2.5 seconds in the future, with an error of 3.99 meters.
Large deviation with expert waypoints at 2.5 seconds in the future, with an error of 1.58 meters.</feedback_end>
And the corrected future locations should be:
<waypoints_start><w1><w2><w3><w4><w5><w6><w7><w8><w9><w10></waypoints_end>

Agent:

Privileged Agent Prompt

Sensorimotor Agent Prompt

Sensorimotor Agent Prompt with Feedback

Figure 3. Examples of Input Prompts of Sensorimotor Agent, Privileged Agent and Feedback Reasoning.

planned route is represented by a set of location tokens of
points sampled uniformly along the centerline of the lane.
With ground-truth environmental information, the privi-
leged agent features can provide rich supervision through
distillation, discussed next.

Sensorimotor Agent Loss: For initial training of the sen-
sorimotor agent, we leverage a loss comprising two terms.
First, we incorporate a waypoints prediction task, computed
by leveraging an L1 loss computed between the prediction
and the expert demonstration

Lwpts = ∥fs
θ(x

s) − y∥1 (4)

Secondly, following distillation-based approaches [89, 101]
we apply a feature distillation L2 loss between the features
Hs and Hp in the sensorimotor and privileged agent

Lfeat = ∥Hs −Hp∥2 (5)
We leverage distillation and do not add additional BEV-
based auxiliary tasks (e.g., [14]), to avoid drastically in-
creasing the language space size and resulting in prohibitive
computational overhead.

Therefore, our optimization objective for training the
sensorimotor agent is a weighted sum over the feature dis-
tillation and waypoints prediction loss

L = Lwpts + Lfeat (6)

3.3. Feedback-Guided Fine-tuning

We propose to incorporate feedback fine-tuning by leverag-
ing fine-grained textual feedback regarding waypoint pre-
diction errors. This enables the sensorimotor agent to effec-
tively learn from experience, including failure which can
provide a highly informative supervision signal. In FeD,
we guide the waypoint predictions with structured critique
and reasoning as language prompts. Given the ground-truth
surrounding object states and the original waypoint predic-
tions, we define a rich taxonomy over five failure cases and
generate a corresponding feedback prompt for each failure
case. Examples of this process are shown in Fig. 3.
Collision with Vehicles: To enhance the model’s ability to
reason over dynamic scenes and future states of surround-
ing objects, our feedback emphasizes both current and po-
tential future collisions. To achieve this, we extrapolate the
future states of surrounding vehicles using a kinematic bi-
cycle model Tveh [11, 14], which predicts the next location
(xt+1, yt+1), orientation αt+1, and speed vt+1 of the vehi-
cle, given its current location (xt, yt), orientation αt, speed
vt, and the applied control at

xt+1, yt+1, αt+1, vt+1 = Tveh(xt, yt, αt, vt, at) (7)

We then compute the potential collision Coljt with the j-th



vehicle at time step t,

Coljt = 1(IoU(Bs
t , O

j
t ) > εC) (8)

where Bs
t is the ego vehicle bounding box in BEV at the

predicted waypoint location ys
t , Oj

t is the bounding box of
the j-th vehicle given its bicycle model output (xj

t , y
j
t , α

j
t )

at time t, and εC is the collision threshold. We use the in-
tersection over union (IoU) between two bounding boxes to
determine if collisions occur.

Collision with Pedestrians: To check for collision with
pedestrians, we predict future pedestrian locations using a
kinematic model Tped which anticipates the next location
(xt+1, yt+1) given its current location (xt, yt) and speed vt
assuming a constant speed

xt+1, yt+1 = Tped(xt, yt, vt) (9)

We identify potential collisions with pedestrians by calcu-
lating IoU between ego vehicle and pedestrian bounding
boxes similar to Eq. 8. This collision model, though simpli-
fied, prioritizes safety by preventing policy overconfidence
in less likely scenarios, e.g., assuming a pedestrian will jay-
walk unless slowing down.

Traffic Light Violations: When the ego vehicle enters the
range of the traffic light bounding box, we check the traf-
fic light violation by calculating the movement of the ego
vehicle when the traffic light state is red or yellow

TL Violationt = 1(

K−1∑
t=0

∥ys
t+1 − ys

t∥2> εTL) (10)

A traffic light violation occurs if the accumulated predicted
waypoints movement is larger than threshold εTL.

Deviation from Expert Demonstration: We calculate the
deviation of the predicted waypoints ys

t from the expert
demonstration yt at each time step t

Dev Expertt = 1(∥ys
t − yt∥2> εE) (11)

We identify deviations by checking if the distance between
the predicted waypoint and the expert demonstration is
larger than the threshold εE .

Deviation from Planned Route: We further compute the
deviation of the predicted waypoints ys

t from Nc points
along the centerline of the planned route,

Dev Plant = 1(min
i∈Nc

(∥ys
t − yp

i ∥2) > εP ) (12)

where yp
i is the i-th point along the center line. We examine

deviations by verifying whether the distance between the
predicted waypoint and its nearest point along the centerline
of the planned route is larger than the threshold εP ,

Model Fine-tuning with Feedback: To ensure our agent’s
ability to both generate informative failure feedback and
rectify mispredicted waypoints, we supervise the model
learning by applying a Cross-Entropy (CE) loss of the
LLaMA outputs over the generated language feedback,

LCE = exp
[
−1

t

t∑
n

logP (sn|s1, . . . , sn−1)
]

(13)

where t is the feedback length. We additionally compute
a L1 loss over the corrected waypoints similar to Eq. 4.
The optimization objective for our proposed feedback fine-
tuning procedure is hence a weighted sum over waypoint
predictions and language CE loss

Lfeedback = Lwpts + LCE (14)

We show that our proposed approach further improves the
driving performance in all benchmarks in Sec. 4.

3.4. Training Procedure

We initialize our vision encoder and language encoder net-
work with the pre-trained LLaVA-7B model, which are
tuned via a LORA [32] adapter for efficiency. Training the
sensorimotor agent involves two stages. First, the agent is
trained with feature distillation based on Eq. 6. In the sec-
ond stage, we fine-tune the model with the proposed feed-
back reasoning and the objective in Eq. 14. The two-stage
training procedure is designed for the sake of speed and
memory efficiency, which is a critical current bottleneck
with MLLMS. Given that the language prompt with feed-
back reasoning can be lengthy, leading to a significant in-
crease in memory usage and training time, we opt to train
the model initially without feedback and a larger batch size
(of six samples per GPU). This enables the model to rapidly
learn the waypoint prediction task. We train for 10 epochs
on four NVIDIA A6000 GPUs. We then fine-tune with
the introduced feedback reasoning for 10 epochs using a
smaller batch size of one. We use AdamW [56] and cosine
annealing [55] scheduler with weight decay 1 × 10−6 and
an initial learning rate of 5× 10−4.

4. Experiments
In this section, we demonstrate the effectiveness of the pro-
posed FeD framework through extensive closed-loop eval-
uation in CARLA simulator [21] and open-loop evaluation
on nuScenes dataset [5]. In CARLA evaluation, to measure
the generalization of the methods to new towns, we use the
LAV [9] benchmark. It contains four routes in Town 02 and
Town 05 with four weathers (16 in total), which are with-
held in training. We follow the standard CARLA leader-
board [1] metrics and report Driving Score (DS), Route
Completion (RC), and Infraction Score (IS). DS is our main



Table 1. Quantitative Evaluation in CARLA. Driving Score (DS - main metric), Route Completion (RC), and Infraction Score (IS)
are reported. We additionally show detailed infraction metrics including Pedestrian Collisions (Ped), Vehicle Collisions (Veh), Layout
Collisions (LC), Red Light Violations (Red), Route deviation (Dev), Route Timeouts (TO), and Agent Blocked (Block). Results are taken
from the corresponding publication when available. * denotes our evaluation using the publicly available code.

Method DS ↑ RC ↑ IS ↑ Ped ↓ Veh ↓ LC ↓ Red ↓ Dev ↓ TO ↓ Block ↓
NEAT* [13] 14.66 100.0 0.15 0.00 0.03 0.00 0.87 0.00 0.00 0.00
LAV [9] 45.20 91.55 0.49 0.00 0.92 0.33 0.28 - - -
TransFuser [14] 39.00 84.00 0.46 0.00 0.74 1.04 0.20 0.00 0.23 0.21
InterFuser* [11] 44.27 59.22 0.67 0.00 0.57 0.06 0.07 0.00 0.47 0.18
TCP [89] 58.00 85.00 0.67 0.00 0.35 0.16 0.01 0.00 0.19 0.19
CaT [99] 66.70 92.14 0.73 - - - - - - -
TransFuser++ [37] 70.00 99.00 0.70 0.01 0.63 0.01 0.04 0.00 0.05 0.00

FeD (Privileged) 80.51 89.20 0.92 0.00 0.01 0.00 0.01 0.00 0.01 0.02
FeD (w/o Feedback, Distillation) 69.14 86.64 0.83 0.00 0.01 0.00 0.01 0.00 0.03 0.00
FeD (w/o Feedback) 72.45 86.78 0.78 0.00 0.02 0.00 0.03 0.00 0.00 0.02
FeD 81.60 97.60 0.84 0.00 0.01 0.00 0.00 0.00 0.01 0.00

TinyFeD 74.65 84.98 0.90 0.00 0.01 0.00 0.00 0.00 0.00 0.03

Expert 88.32 95.82 0.93 0.00 0.03 0.00 0.00 0.00 0.00 0.02

metric which is computed from RC and IS. To provide more
insight into our evaluation, more detailed metrics are pro-
vided in Table 1. We further analyze FeD in real-world
driving settings using the challenging nuScenes [5] bench-
mark. Following previous works [35, 40, 58, 99], we show
the L2 displacement error and the collision rate in one, two,
and three seconds to evaluate the model performance.

4.1. Comparison With State-Of-The-Art

Closed-Loop Results: As shown in Table 1, with fea-
ture distillation training from the privileged agent and the
proposed feedback reasoning fine-tuning, FeD obtains a
DS of 81.60%, achieving state-of-the-art performance. We
note that FeD, which only takes as input a single front
camera image, outperforms the best LiDAR-based method,
TransFuser++ by 16.6% in DS, from 70.00 to 81.60, and
20.0% in IS while achieving comparable performance to
the rule-based expert. Given various memory and infer-
ence constraints of LLMs, we also include results with a
lighter-weight model based on TinyLLaVA [105]. The re-
sulting TinyFeD is one-seventh its original model size and
achieves a 74.65 DS, 84.98 RC, and 0.90 IS scores. Specif-
ically, TinyFeD outperforms Transfuser++, while the two
have similar inference speeds, 10.3 FPS vs. 11.5 FPS for
TinyFeD and Transfuser++, respectively.

Open-Loop Results: To further demonstrate the benefits of
FeD in real-world driving scenarios, Table 2 shows the pro-
posed method obtains state-of-the-art performance on the
official nuScenes validation split in both displacement error
and collision rate. Specifically, FeD achieves an average L2

displacement error of 0.34m, improving by 8.1% over the
previous best none-LLM-based method VAD [40]. More-
over, our proposed method surpasses the LLM-based GPT-
Driver [58], reducing the average L2 displacement error
from 0.44m to 0.34m, and the average collision rate from

Table 2. Open-Loop Evaluation on nuScenes. FeD achieves
state-of-the-art open-loop evaluation performance on nuScenes [5]
validation set compared with both none-LLM based methods and
LLM-based GPT-Driver [58]. We evaluate FeD on two different
measures of metrics for fair comparison1.

Metrics Method
L2 (m) ↓ Collision (%) ↓

1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3

ST-P3 [34] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
VAD [40] 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14
GPT-Driver [58] 0.20 0.40 0.70 0.44 0.04 0.12 0.36 0.17

FeD 0.21 0.33 0.49 0.34 0.00 0.03 0.15 0.06

UniAD

NMP [94] - - 2.31 - - - 1.92 -
SA-NMP [94] - - 2.05 - - - 1.59 -
FF [33] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO [43] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33
UniAD [35] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
GPT-Driver [58] 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44

FeD 0.27 0.53 0.94 0.58 0.00 0.04 0.52 0.19

0.17% to 0.06% under ST-P3 metrics. We note that GPT-
Driver depends on a separate vision perception model which
is not trained in an end-to-end fashion. Moreover, FeD is
efficient, while GPT-Driver involves complicated chain-of-
thought reasoning and slow recursive language generation
making real-time closed-loop evaluation difficult. Under
UniAD metrics [35], FeD consistently outperforms prior
works by a significant margin. Additional analysis can be
found in the supplementary.

4.2. Ablation Studies
Impact of Privileged Prompting and Distillation: Ta-
ble 1 depicts incorporating the privileged environmental in-
formation about the surrounding objects, traffic lights and

1The issue has been publicly discussed on Github: https://github.com/
hustvl/VAD/issues/33

https://github.com/hustvl/VAD/issues/33
https://github.com/hustvl/VAD/issues/33


GT Feedback

Given the predicted future locations of ego vehicle, the following instances would occur:
 
Large deviation with planned route at 1.25 seconds in the future, with an error of 0.72 meters.
Large deviation with planned route at 2.0 seconds in the future, with an error of 0.57 meters.
Large deviation with expert route at 2.25 seconds in the future, with an error of 0.80 meters. 
Large deviation with expert route at 2.5 seconds in the future, with an error of 1.20 meters.

Predicted Feedback

Given the predicted future locations of ego vehicle, the following instances would occur:

Large deviation with planned route at 1.5 seconds in the future, with an error of 0.58 meters. 
Large deviation with planned route at 1.75 seconds in the future, with an error of 0.54 meters.
Large deviation with expert route at 1.75 seconds in the future, with an error of 0.54 meters.
Large deviation with expert route at 2.0 seconds in the future, with an error of 1.75 meters. 
Large deviation with expert route at 2.5 seconds in the future, with an error of 0.54 meters. 

Figure 4. Example Post-Feedback Prediction. We present an example of our model waypoint and feedback reasoning predictions. Top-
left: Front camera RGB image. Bottom-left: BEV visualization of surrounding environment [101] along with ground truth waypoints
(green), initial waypoint predictions before feedback fine-tuning (orange), and corrected waypoint predictions after feedback fine-tuning
(blue). Top-right: Ground-truth feedback reasoning. Bottom-right: Feedback predicted by FeD.

the planned path into the language prompt improves the
DS from 69.14 to 80.51 and achieves the best IS of 0.92.
We note that providing extensive supervision from the priv-
ileged agent over the internal features to the sensorimotor
agent results in a 4.8% improvement in DS.

Impact of Feedback Reasoning: Table 1 demonstrates that
fine-tuning the sensorimotor agent with the proposed feed-
back reasoning mechanism significantly boosts the driving
performance by 12.6% in DS, 12.5% in RC and 7.7% in IS.
We also observe that the resulting FeD sensorimotor agent
even achieves a higher DS than the privileged agent as the
agent learns to reason over and rectify errors based on its
own past experiences. More ablations regarding distillation
and feedback reasoning are shown in the supplementary.

4.3. Qualitative Results

Fig. 4 depicts the feedback reasoning qualitative results
generated by FeD model on CARLA validation set. We vi-
sualize a complete scenario: the front camera image, BEV
representation [101] of the scene with the originally pre-
dicted waypoints, ground truth waypoints, corrected way-
points prediction, the ground truth feedback reasoning, and
the predicted feedback reasoning given the originally pre-
dicted waypoints. We find that our FeD model is able to
generate reasonable feedback about the original prediction
errors and predict corrected waypoints accordingly. This
validates our hypothesis that providing extensive corrective
language feedback benefits sensorimotor driving learning.
For example, the initial model struggled to imitate the ex-
pert demonstration while changing the lane to the right,
leading to a potential off-road deviation as shown in Fig. 4.
Our feedback ground truth offers comprehensive corrective
guidance for all inaccurately predicted waypoints. After

the feedback fine-tuning, the FeD model demonstrates the
ability to not only give corrective feedback about the initial
wrong predictions but also predict the safe waypoints. More
qualitative examples are provided in the supplementary.

5. Conclusion
We present FeD, the first sensorimotor end-to-end LLM-
based autonomous driving model. FeD enables efficient
closed-loop evaluation compared with the existing LLM-
based methods, which often leverage slow and costly infer-
ence. In addition to the efficient architecture, FeD is trained
from rich supervision, learning via distillation from a privi-
leged agent with BEV information of the scene. We further
utilize detailed corrective feedback regarding the reasons
behind driving prediction failures, thus allowing the senso-
rimotor agent to better learn from its own mistakes. FeD ob-
tains state-of-the-art results in both closed-loop simulation
and open-loop real-world evaluation. Given the computa-
tional overhead of LLMs, future work includes overcoming
limitations for real-time applications, e.g., through more ef-
fective distillation strategies. Leveraging various types of
feedback, e.g., more coarse high-level feedback, can further
increase the usability of the proposed feedback-based mech-
anism in the future. Finally, improved sample efficiency
could be pursued by future work, as current fine-tuning re-
quirements for fine-tuning involve hundreds of iterations to
effectively leverage feedback.
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[75] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-
nav: Robotic navigation with large pre-trained models of
language, vision, and action. In CoRL, 2023. 2

[76] Shai Shalev-Shwartz and Amnon Shashua. On the sample
complexity of end-to-end training vs. semantic abstraction
training. arXiv preprint arXiv:1604.06915, 2016. 2

[77] Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and
Yu Liu. Safety-enhanced autonomous driving using inter-
pretable sensor fusion transformer. In CoRL, 2023. 2

[78] Hao Shao, Letian Wang, Ruobing Chen, Steven L Waslan-
der, Hongsheng Li, and Yu Liu. Reasonnet: End-to-end
driving with temporal and global reasoning. In CVPR,
2023. 2

[79] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M
Sadler, Wei-Lun Chao, and Yu Su. Llm-planner: Few-
shot grounded planning for embodied agents with large lan-
guage models. In ICCV, 2023. 1, 2, 3

[80] Jonathan Spencer, Sanjiban Choudhury, Arun Venkatra-
man, Brian Ziebart, and J Andrew Bagnell. Feedback in im-
itation learning: The three regimes of covariate shift. arXiv
preprint arXiv:2102.02872, 2021. 1

[81] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy,
and Cordelia Schmid. Videobert: A joint model for video
and language representation learning. In ICCV, 2019. 2

[82] Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco
Pavone, and Philipp Kraehenbuehl. Language conditioned
traffic generation. In CoRL, 2023. 2

[83] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde.
End-to-end model-free reinforcement learning for urban
driving using implicit affordances. In CVPR, 2020. 2

[84] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. LLaMA: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023. 1, 2, 4

[85] Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen,
and Jiwen Lu. Drivedreamer: Towards real-world-driven
world models for autonomous driving. arXiv preprint
arXiv:2309.09777, 2023. 2

[86] Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayara-
man, and Yang Gao. Fighting copycat agents in behavioral
cloning from observation histories. In NeurIPS, 2020. 1, 2

[87] Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao
Ma, Pinlong Cai, Min Dou, Botian Shi, Liang He, and
Yu Qiao. Dilu: A knowledge-driven approach to au-
tonomous driving with large language models. arXiv
preprint arXiv:2309.16292, 2023. 2, 3

[88] Dongming Wu, Wencheng Han, Tiancai Wang, Yingfei Liu,
Xiangyu Zhang, and Jianbing Shen. Language prompt
for autonomous driving. arXiv preprint arXiv:2309.04379,
2023. 2

[89] Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan,
Hongyang Li, and Yu Qiao. Trajectory-guided control pre-
diction for end-to-end autonomous driving: A simple yet
strong baseline. arXiv preprint arXiv:2206.08129, 2022. 2,
5, 7

[90] Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong
Guo, Kenneth KY Wong, Zhenguo Li, and Heng-
shuang Zhao. Drivegpt4: Interpretable end-to-end au-
tonomous driving via large language model. arXiv preprint
arXiv:2310.01412, 2023. 1, 2, 3

[91] Sean Ye, Glen Neville, Mariah Schrum, Matthew Gombo-
lay, Sonia Chernova, and Ayanna Howard. Human trust
after robot mistakes: Study of the effects of different forms
of robot communication. In RO-MAN, 2019. 3

[92] Naoki Harrison Yokoyama, Sehoon Ha, Dhruv Batra, Ji-
uguang Wang, and Bernadette Bucher. Vlfm: Vision-
language frontier maps for zero-shot semantic navigation.
In 2nd Workshop on Language and Robot Learning: Lan-
guage as Grounding, 2023. 2



[93] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kir-
mani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-
Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan
Humplik, et al. Language to rewards for robotic skill syn-
thesis. arXiv preprint arXiv:2306.08647, 2023. 2

[94] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin
Yang, Sergio Casas, and Raquel Urtasun. End-to-end inter-
pretable neural motion planner. In CVPR, 2019. 7

[95] Chris Zhang, Runsheng Guo, Wenyuan Zeng, Yuwen
Xiong, Binbin Dai, Rui Hu, Mengye Ren, and Raquel Urta-
sun. Rethinking closed-loop training for autonomous driv-
ing. In ECCV, 2022. 1

[96] Jimuyang Zhang and Eshed Ohn-Bar. Learning by watch-
ing. In CVPR, 2021. 2

[97] Jimuyang Zhang, Minglan Zheng, Matthew Boyd, and Es-
hed Ohn-Bar. X-world: Accessibility, vision, and auton-
omy meet. In ICCV, 2021. 1

[98] Jimuyang Zhang, Ruizhao Zhu, and Eshed Ohn-Bar. Selfd:
self-learning large-scale driving policies from the web. In
CVPR, 2022. 2

[99] Jimuyang Zhang, Zanming Huang, and Eshed Ohn-Bar.
Coaching a teachable student. In CVPR, 2023. 1, 2, 3,
7

[100] Lunjun Zhang, Yuwen Xiong, Ze Yang, Sergio Casas, Rui
Hu, and Raquel Urtasun. Learning unsupervised world
models for autonomous driving via discrete diffusion. arXiv
preprint arXiv:2311.01017, 2023. 2

[101] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu,
and Luc Van Gool. End-to-end urban driving by imitating
a reinforcement learning coach. In ICCV, 2021. 2, 5, 8

[102] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu,
and Luc Van Gool. Trafficbots: Towards world models
for autonomous driving simulation and motion prediction.
arXiv preprint arXiv:2303.04116, 2023. 2

[103] Albert Zhao, Tong He, Yitao Liang, Haibin Huang, Guy
Van den Broeck, and Stefano Soatto. Lates: Latent
space distillation for teacher-student driving policy learn-
ing. arXiv preprint arXiv:1912.02973, 2019. 2

[104] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun.
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